
between the integral flow parameters is less. As an example, some data for three calculation 
variants are given in Table I (the numerator shows percentage values of 5, %, and the de- 
nominator shows values of ~3 in ~m). 

Therefore, when accounting for the effect of gas flow, the decrease in momentum loss 
due to refinement of ~ji is about 10% of 5. 
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STUDY OF INERTIAL SETTLING OF POLYDISPERSED PARTICLES AT THE 

CRITICAL POINT OF A SPHERE 

Yu. M. Tsirkunov UDC 532.529:533.6.01~ 

The flow of an incompressible gas with particles past a body at high Reynolds numbers 
is studied in many works, for example, in [I-6], where in the calculation of the character- 
istics of inertial settling of an impurity the particles are assumed to be monodispersed. At 
the same time, in real gas suspensions the particle sizes are always different. Polydis- 
persity of particles even in the case when their interaction with one another is ignored, 
substantially complicates the picture of the motion of the impurity near the body. Particles 
of different sizes are deflected by the gas flow differently. As a result, the fractions are 
redistributed in space and the initial particle-size distribution function of the average 
density of the dispersed phase changes. In this case it is difficult to set up and solve the 
"kinetic" equation describing the evolution of the distribution function. In this paper we 
propose a method for calculating the flux density of settling polydispersed particles at the 
front critical point and the flux-density distribution function over the fractions. In so 
doing just as in [I-6], it is assumed that the particle concentration is small, and the effect 
of the particles on the gas flow and the interaction of particles with one another are ignored. 

In the case when the impurity concentration is negligibly small, the problem of the flow 
of a gas suspension past a body reduces, as is well known, to a sequence of two simpler prob- 
lems the construction of the flow field of the carrying medium near the body and the calcula- 
tion of the particle trajectories in this field. If the Reynolds number is large, then the 
viscosity of the gas in the problem of flow past the body is usually ignored. Estimates [I, 
3, 4] and a direct calculation [7] show, however, that there exists a quite wide range of 
parameters of the flow of the gas suspension where the viscous boundary layer on tbe surface 
of the body substantially affects the motion of the impurity and, therefore, in the general 
case it cannot be neglected in determining the characteristics of inertial settling of the 
particles. In this paper the flow field of the gas near the sphere is given just as in [7], 
based on a model which includes the external potential flow and the viscous boundary layer. 
It is shown in [8] that the use of such a model in the calculation of the flux density of the 
settling particles gives a quite high accuracy at the critical point, if Re ~ 105 . 

In the problem under study the dominant force exerted by the carrying gas on a dispersed 
particle is the aerodynamic drag force [7, 4, 7]. Stokes' law [I-4] or the "standard curve" 
[5-7], which is obtained for an unbounded uniform gas flow past a particle, is often used 
for the aerodynamic drag coefficient of the particle. At the same time, it is known [9] that 
when the particle motion in the viscous medium is slow, near a solid surface its aerodynamic 
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drag coefficient can be several times higher than the value obtained from Stokes' formula. 
Because of this, in this paper we evaluate the effect of the wall on the trajectory of the 
particles near the critical point. 

The numerical results presented refer to the log-normal distribution law for the average 
particle density over size fractions in the unperturbed flow. The characteristics of inertial 
settling of the dispersed phase as a function of the Reynolds nu~er and the parameters r m and 
s, entering into the log-normal law, are studied. 

I. Let a uniform flow of a gas suspension be incident with a velocity V~ on a sphere 
radius ~. The carrier gas is assumed to be viscous and incompressible, and the particles are 
assumed to be spherical. We shall study a neighborhood around the axis of symmetry in front 
of this sphere, where the flow is laminar. It is assumed that the effect of the particles on 
the motion of the gas is negligibly small and the particles do not interact with one another. 
The equations of motion of a two-phase mixture [10] decompose in this case into the equations 
of motion of the pure gas 

div  V 0, p0 dV = --~/-- = d iv  ( - -  p E  + ~) (1.1) 

and the equations of motion of separate particles 

~raA 0 dpVp  1 ~ .  o ~ ""  
3 " ~  dt 7 o D P  n r ' l v  -- Vvl ( V - -  Vv) �9 (1 .2 )  

Here V and Vp are the velocity of the gas and the velocity of the particle; p0 and p~ 
are the physical densities of the gas and of the particle; p is the pressure in the gas; E 
is the unit tensor; ~ is the Navier--Stokes viscous stress tensor; r and C D are the radius 
and aerodynamic drag coefficient of the particle; d/dt and dp/dt are the substantial deriva- 
tives, associated with the motion of the gas and of the particles, respectively. 

In Eq. (1.2) only the aerodynamic drag force of the particle is taken into account. It 
is evident from this equation that the velocity field of the carrying medium V must be known 
in order to determine the motion of separate particles. In the general case the problem of 
determining the field V requires numerical integration of the full Navier--Stokes equations 
( 1 . 1 ) .  

We shall study a state of flow past a sphere when Re = V~/v is large (v is the kinematic 
viscosity of the gas). In this case, in order to solve the problem of flow of a pure gas 
over the bow surface of the sphere, the method of exterior and interior asymptotic expansions 
with respect to the small parameter ~ = I//~-e [11] can be used; for the leading terms of the 
expansions it leads to Euler's equations in the exterior region and to the usual boundary- 
layer theory in the interior region. We shall confine our attention below to the leading 
terms of the expansions in each of the regions. 

We introduce the boundary-layer system of coordinates (x, y), where the x axis is ori- 
ented along the generatrix of the sphere and the origin is located at the front critical point, 
while the y axis is oriented along the normal to x and is measured from the surface. We trans- 

form to dimensionless variables; all linear dimensions are sealed to the radius of the sphere 
~; the components of the gas velocity u and v and of the particle velocity Up and Vp are sealed 
to v~; and, the time t is sealed to ~/V~. We denote by p the ratio of the densities P~176 
Then Eq. (1.2) in the boundary-layer coordinate system is written in the form 

dj,% % ~  + 3p CD[ V - -  Vp I (~ - -  u~), 
dt t + y  ~r (7 .3) 

dp~'p u~ 3p 
~t 1 + y + - i 7  C ~ l  v - -  V p l  (v - -  ~,~), I V - -  V p [  = '[(~ - -  ~t~) ~ + (~ - -  vp)~l ~/~. 

The components of the velocity of the carrying gas in the exterior region are calculated 
from the formulas of a potential flow past the sphere [12]: 

u = [1 + (1/2)(1 ~ y ) -a ]  s in  x, v = - - [ 1  - -  (1 + y ) -3 ]  cos x, ( 1 . 4 )  

In the viscous boundary layer on the sphere we have [13] 

u = ( 3 / 2 ) f ( q ) X ~ +  O(x3), ~ = - -  V35J(3~ § O(x~), n = ~3g/8 ,  (1.5) 

where the  f u n c t i o n  f ( q )  i s  d e t e r m i n e d  f rom the  s o l u t i o n  of  the  b o u n d a r y - v a l u e  p rob lem 

2 1 ' "  § 2 H "  - -  f '~ § t = O, j ( 0 )  = j ' ( 0 )  = O, I ' ( ~ )  = t .  
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The fields of the components u and v near the sphere are obtained "in the whole" by join- 
ing the like profiles (1.4) and (1.5) at their points of intersection for each fixed value of 
x, as was done in [7]. The approximation of the field u constructed in this manner has a uni- 
form error of the order 0(6) in the entire region of flow studied; for the v field this error 
is nonuniform. It is of the order of 0(62 ) in the boundary layer and increases up to 0(6) in 

the exterior nonviscous region. A more accurate approximation of the v field in the viscous 
layer, where v ~ 6, enables a better description of the qualitative features of the behavior 
of the v component and has a much lower relative error than the everywhere uniform approxi- 
mation, of the order of 0(6). The error in the approximation of the u and v fields gives 
rise to some error in the calculation of the flux density of the settling particles in sepa- 
rate fractions at the bow point of the sphere and in the determination of the critical radius 
of the particles r, at which the smaller fractions practically do not settle on the sphere. 
With Re = 105 the error is equal to 1.5% for r, and I-3% for the flux density when r > r, (ex- 
cluding fractions with sizes near r,); in addition, this error decreases rapidly as Re in- 
creases [8]. 

To calculate the trajectory of a separate particle, the kinematic dependences 

dpx/dt = Up/(l + g), dpy/dt = v  v, ( 1 . 6 )  

must be studied together with Eqs. (1.3) and the relations for the aerodynamic drag coeffi- 
cient of a particle and the initial conditions must be given. 

In the unperturbed flow, in the limit y § ~ the velocity of the particles is determined 
by the relations Up = sinx, Vp = --cos x. In the numerical integration of the system of equa- 
tions (1.3) and (1.6), however, these conditions must be given with some finite value of y~. 
Let z be the distance between the particle and the axis of symmetry at y~. Then the initial 
conditions for the starting system of equations can be written in the form 

t = o :  + = - ( l  - 4 )  

= aresin up, g = g~. 

In the calculations it was assumed that y = 4. In this case the components u and v of the 
gas velocity differ from the unperturbed values by less than I%. 

The system of equations (1.3) and (1.6) was integrated by a numerical method of the pre- 
dicator--correetor type with fourth-order accuracy. First, the intermediate values of the 
functions sought were calculated using a four-point Adams--Bashfort difference scheme, after 
which these values were refined using the residual terms of the predicator at the preceding 
step (this procedure is described in detail in [14]); then a recalculation was performed using 
the four-point Adams--Multon difference scheme. In order to increase the accuracy of the cal- 
culation in the region of the viscous boundary layer, where the gradients of the flow para- 
meters are large, the integration step here was decreased by a factor of 4-10. 

The criterion for settling of a particle in the r fraction on the surface of the sphere 
was taken as the condition that the center of the particle intersect the line y = r. In all 
calculations the ratio of the phase densities p was assumed to be equal to 0.0005. 

2. The dependence for CD, approximating the "standard curve" of the drag of the sphere 
to within I-2%, is proposed in [5] and has the form 

CD = A + B.'Rer. + C/Re~, R %  = 21 V - -  Vp Ir/v, 

Rep ~ O,i, 

0.1 <Re v - ~ { ,  

i < Rep ~ 10, 

10<R%~i00, 
lO0 < Rep ~-~ lO00, 

A = 0, B = 24,  C = 0, 

A = 3 .69 ,  B = 22 .73 ,  C = 0 ,0903 ,  

A = t . 2 2 2 ,  B = 2 9 . t 6 6 7 ,  C = - - 3 . 8 8 8 9 ,  

A = 0 . 6 t 6 7 ,  B = 46 .5 ,  C = - - i i 6 , 6 7 ,  

A = 0 .3644 ,  B = 98 .33 ,  C == - - 2 7 7 8 .  

( 2 . 1 )  

Under the assumptions made above, the use of the "standard curve" for the aerodynamic 
drag is justified if the particle moves far away from the surface in the flow. When the mo- 
tion of the particle is slow, however, in the viscous boundary layer at a distance of the 
order of its radius from the surface of the body the drag law differs substantially from the 
"standard" law [9]. This is associated with the fact that the flow field of the carrying me- 
dium near the particle "at infinity" is substantially nonuniform. 
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A detailed review of studies of the motion of particles near solid walls based on the 
stationary Stokes equations is given in [9]. The degree to which the drag of the particle 
for Rep ~ I differs from Stokes law depends on the relative distance between the particle 
and the wall, on the direction of the particle motion, and on the nature of the flow of the 
carrying medium near the wall. If the spherical particle moves in a viscous stationary me- 
dium near a flat unbounded wall, then for r/h ~ I the expression for C D can be represented in 
the form of an approximate asymptotic formula [terms of the order of (r/h)~ and higher are 

dropped] 

CD=-fi-~p ~+ ~V+ ~V ' (2.2) 

where h is the distance between the center of the particle and the wall; the coefficient B 
depends on the direction of motion of the particle. Thus g = 9/16 for particle motion paral- 
lel to the wall and ~ = 9/8 for motion perpendicular to the wall [9]. Because of the linear- 
ity of the problem in the Stokes formulation, the motion of the particle in an arbitrary di- 
rection can be obtained as the sum of motions in the indicated directions. The formula (2.2) 
for parallel and perpendicular motions of the particle is compared with the corresponding 
exact solutions in [15]. This formula in both cases has a very high accuracy for r/h < 0.2. 
The error increases with r/h and when r/h ~ 0.65 it is equal to about 0.5% for parallel mo- 
tion and about 25% for perpendicular motion. In the limit r/h § I the formula (2.2) in both 
eases is only in qualitative agreement with the exact solution. It is shown in [16] that if 
the particle moves near the wall in a uniform shear flow (which to a certain extent models 
the flow in the boundary layer), then the linear term in (2.2) is preserved without changes. 
From the results presented in [9] it may be concluded that in this case the quadratic term 
also does not change. However, terms of higher order depend substantially on the nature of 
the flow of the carrying medium near the wall, so that in the analysis of the motion of a 
particle in the boundary layer on the sphere it is apparently meaningless to refine the for- 
mula (2.2) on the basis of model problems. 

In this paper, in order to estimate the "effect of the wall" on the particle motion in 
the vicinity of the critical point, in the first and second equations of (1.3) C D was re- 
placed by CDx and CDy, respectively, for which the following relations were used: 

where the value of C D was calculated from the formulas (2.1). In addition, quite small par- 
ticles, whose motion in the viscous boundary layer is close to a creep, were studied. 

Figure I shows the trajectories of particles of two sizes in the vicinity of the criti- 
cal point [I, 2) r = 0.5-I0-~; 3, 4) r = 0.54"10-4]; Re = I0 s, z~ = I0 -s The trajectories 
I and 3 correspond to the "standard curve" (2.1), trajectories 2 and 4 correspond to the for- 
mulas (2.3). We note that for the given p and Re the critical radius of the particles is 
r, % 0.52-10 -4 [7]. The value of Rep in the viscous boundary layer did not exceed 0.001 for 
trajectories I and 2 and 0.5 for trajectories 3 and 4. It is evident from Fig. I, that if 
the size of the particle is even insignificantly greater than r,, then the wall has practi- 
cally no effect on its trajectory (the lines 3 and 4 coalesce) and, therefore, on the char- 
acteristics of inertial settling of this fraction. At the same time, if r < r,, then this 
effect becomes appreciable. This especially affects the magnitude of the flux of the de- 
scending particles, which is determined by the coordinate Xw at the moment of settling. Thus 
in the case presented (r = 0.5"10 -4 ) the difference in the flow is equal to m30%. In study- 
ing the settling of the particles, it evidently makes sense to study only those fractions 
whose flux is not vanishingly small, i.e., fractions with sizes r > r,; at the same time, as 
follows from the results presented, the effect of the wall in the determination of the flux 
density of the particles at the critical point is insignificant. This result is also valid 
for other Reynolds numbers studied (Re = I0 G and 107). The physical explanation for this is 
that in spite of the manyfold increase in CD near the surface of the sphere, a particle with 
radius r larger than r,, having a sufficient store of kinetic energy, "drifts" through the 
boundary layer within a very short time, so that the additional momentum due to the effect 
of the wall is much smaller than the intrinsic momentum of the particle. For r < r, this 
momentum is comparable to the momentum of the particle, and for this reason the change in the 
trajectory is appreciable. 
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Based on the estimate obtained above, the effect of the wall was ignored in the study 
of the inertial settling of polydispersed particles at the critical point and the "standard 
curve" (2.1) was used for CD. 

3. In the derivation of the formulas (3.4) and (3.6), all quantities, unless otherwise 
stated, are dimensional. Let us assume that in the unperturbed flow the average density of 
the dispersed phase pp~ and its normalized distribution function over the fractions g~(r) are 
given. The density of the total particle flux in the unperturbed flow and the density of the 
flux of particles with radii varying from r to r + dr are evidently given by 

q& = pp=V=,  dq~(r) = q=g~(r)dr.  (3. I) 

It is evident from the second relation that g~(r) is also a function of the flux density 
distribution q~. We denote by qw and dqw(r) the total flux density of the dispersed particles 
and the flux density of particles with radii from r to r + dr, respectively, settling at the 
critical point. We introduced the function 

q(r) = dqw(r)/dq~(r ). ( 3 . 2 )  

The quantity q(r) can be found if the trajectory of the particles of the given fraction 
is known. Indeed, let a particle with radius r, moving at a distance z~ from the axis of sym- 
metry in the unperturbed flow (with y = y~), settle onto the surface of a sphere at a point 

with the coordinate x w. Then 

q (r) = l i m  (z~/xw) ~. 

In the calculations the quantity q was calculated from the formula q = (z~/xw)2, where the 
parameter z~ was fixed so that the dimensional value of x w would not exceed 0.01. In this 
case, the accuracy of the indicated formula is very high. 

From the relations (3.1) and (3.2) follows the equality 

dq~(r) = q~q(r)g~(r)&'.  ( 3 . 3 )  

Integrating (3.3) over r, we obtain 

go = q~J q ( r ) g ~ ( r )  dr~ (3.4) 
0 

where the limits 0 and ~ conditionally denote the smallest and largest particle radii in the 
gas suspension. 

We introduce the normalized flux density distribution function of particles settling at 
the critical point gw(r) with the help of the equality 
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dq~o(r) = qwgw(r)dr. (3.5) 

Substituting into (3.5) the expression for dqw(r) from (3.3) and transforming, we obtain 

g~(4 = q~q(r)g=(r)/q,~. (3.6) 

We now transform to dimensionless variables, scaling qw to q~, the radius of the par- 
ticles as before to a, and g~ and gw to I/a. Then the relations (3.4) and (3.6) will assume 

the form 

qw= t q(r)g~(r)dr, g~o(r) q(,)g~(r) (3.7) 
�9 q w  
0 

The function q(r) in the relations (3.7) was determined for each Reynolds number from 
the results of calculations of the particle trajectories for more than 50 fractions. The 
step along r was chosen to be nonuniform, so as to approximate the function q(r) with high 
accuracy in a piecewise linear form in a wide range of variation of the relative radius of 
the particles (r varied form 0.4-I0 -S, when for the values of Re studied q ~ 0, up to 0.2" 
10 -2 , when q ~ I). 

In the numerical study of the characteristics of inertial settling of polydispersed par- 

ticles, the function g~(r) was chosen in the form of the log-normal law [17], which in dimen- 

sionless variables has the form 

(3.8) 

where In r m and in s are the mathematical expectation and the rms deviation of the logarithm 

of the relative radii of the particles in the mixture. The distribution function (3.8) is 

determined by two independent parameters rmand s. If, however, r is replaced by the argu- 
ment r/rm~ then the product rmg will be determined solely by the parameter s and for a fixed 
value of s the unperturbed distribution function in the coordinates (r/rm, rmg) will there- 
fore be independent of r m. Such coordinates are convenient for comparing the flux density 
distribution functions of the settling particles, obtained for different values of rm, with 
the unperturbed distribution law, and they shall be used below. 

Figure 2 shows the dependence of the dimensionless density of the total flux of poly- 

dispersed particlesi~ettling at me critical point on the quantity s for different values of 
r m (in a, b, and c Re = 105 , 106 , 107 , respectively). Curves I-6 correspond to rm-10 ~ = 1.0; 

0.8; 0.6; 0.4; 0.2; 0.1. The quantity qw at s = I is equal to q(rm) , i.e., the density of 
the relative flux of monodispersed particles with radius r m. As is evident from the results 
presented, variation of the magnitude of the spread in the particle sizes relative to the 

given value r m over a wide range (I < s < 2) has virtually no effect on the value of qw, if 
qw ~ 0.2. The difference in qw for mono- and polydispersed particles with a large size spread 
(s = 2) in this case is not more than 10%, and for some combinations of Re and Rm, qw is vir- 
tually independent of s. Thus for Re = l0 s , r m = 1.0"10 -4 (curve I in Fig. 2a) and Re = 106 , 
r m = 0.4-10 -4 (curve 4 in Fig. 2b) qw deviates by about I% when s varies from I to 2. We 

note that in both cases the total flux density is approximately the same (qw ~ 0.4). 

The distribution function of the particle flux density at the critical point over the 

size fractions with Re = 106 are shown in Fig. 3. Curves I and 4-6 refer to the same values 
of r m as does Fig. 2. The solid lines correspond to s = 1.8 and the broken lines correspond 
to s = 1.2. The dot-dash lines show, for comparison, the distribution functions in the un- 

dispersed flow (I, II -- s = 1.8; 1.2). From the curves presented it is evident that the graph 
of the function gw for all r m is shifted toward higher values of r than for g~. At the same 
time, the distribution law gw approaches the unperturbed law as rm increases. The noted shift 
in gw is explained by the fact that the larger particles are not deflected as strongly by the 
gas flow and their relatiVe fraction increases in the presence of settling. The largest de- 
viation of the distribution function gw from the unperturbed function is observed in the case 
when the size of the "representative" fraction in the starting mixture is too small, so that 
either they are strongly deflected by the carrying gas and fly past the bow surface without 

settlin~ er their sett]Jn~is insignificant. In this case, onlyquite !arQe fractions, of which 
there are very few in the incident flow, settle. It is evident (see Fig. 2) that even the 
density of the total flux of settling particles is small in this case. 
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For some value of r/r m the function gw changes in an almost jump-like fashion (see, for 

example, the curve 6 in Fig. 3 with r/r m = 1.6). This effect is linked to the influence of 
the viscous boundary layer on the sphere, which gives rise to a sharp decrease in the par- 
ticle flux toward the surface as the particle radius decreases, beginning with the critical 

value r, [7] (in this case r, = 0.16"I0-~). If there are many particles with radii less than 
the critical value in the starting mixture, then the sharp drop in the function is distinct, 

as in the indicated example. As the number of small particles decreases, the picture becomes 
somewhat "smeared." 

Calculations of the distribution functions gw were also performed for other values of 
the parameters rm, s, and R e . More than 200 variants were calculated. The mathematical ex- 
pectation <r> w and the rms deviation a w of the radii of the polydispersed particles settling 
at the critical point were found for the distribution functions obtained. Some typical re- 
sults are shown in Figs. 4 and 5. Curves I, 4, and 6 refer to the same values of r m as in 
Fig. 2. The dashed lines correspond to Re = I0 s, the solid lines correspond to Re = 106 , and 
the dot--dash lines correspond to Re = 107 . For comparison, the mathematical expectations 

<r>~ and the rms deviations o~ of the particle radii, corresponding to the undisturbed dis- 
tribution function (3.8), are also presented in the figures (dotted lines). The dependences 
of <r> w and o w on s for Re = I0 s, r m = 0.4.10 -4 and Re = 106 , r m = 0.1-10 -4 in the interval 

I ( s ~ 1.2 are not given because of the low accuracy of the results. The unsatisfactory ac- 
curacy of the determination of <r> w and o w for the indicated values of Re, rm, and s is linked 
to the high relative error in the calculation of qw, which stands in the denominator in for- 
mula (3.7) for gw, when this quantity is close to zero (see Fig. 2). 

As is evident from the results presented, the rms deviation of the radii of the settling 

particles is for I ~ s ~ 1.5 a more conservative characteristic than the average radius <r> w- 
Indeed, in the indicated range of variation of s for all Re numbers and values of r m studied, 
we have o w ~ o~, while the quantity <r> w depends quite markedly on Re and can differ substan- 
tially from <r>~ (for example, for Re = 106 , r m = 0.1"10 -4 and s = 1.5 the average particle 

radii in the unperturbed flow and at the critical point differ by a factor of 2). The dif- 

ference between a w and a~ increases with s. 

For fixed r m and s, Re approach <r> w and ~w with the corresponding unperturbed values as 
Re increases. The small deviation of <r> w and o w from <r>~ anda~ indicates that for the given 
value of Re almost all particles in the gas suspension are weakly deflected by the gas flow- 
ing past the sphere and their trajectories are nearly rectilinear. 

In conclusion, it should be noted that the proposed method for determining the flux den- 
sity of inertially settling polydispersed particles and their size distribution function, 
based on the calculation of the trajectories of particles of separate sizes, is easily gen- 
eralized to other points of the bow surface. 

I ~ 
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SUPERSONIC FLOW OF A GAS SUSPENSION NEAR A WEDGE IN THE PRESENCE 

OF REFLECTED PARTICLES 

V. D. Sarychev, A. P. Trunev, 
and V. M. Fomin 

UDC 532.529.5 

Supersonic flow, perturbed by the interaction of the gas with a cloud of monodispersed 
particles, near a wedge is studied. The exact solution of the problem of the motion of par- 
ticles behind an oblique shock and particles specularly reflected from the surface of the 
wedge is given. These results are used to determine the perturbations of the gasdynamic para- 
meters and forces acting on the wedge in a two-phase flow. The effects of the particles on 
the flow in two different situations are compared: In one situation the particles stick to the 
surface of the wedge; in the other situations they reflect elastically, and form a layer of 
dust with a sharp contact boundary. 

The problem of the perturbed gas flow behind an oblique shock was previously studied in 
gasdynamics [I] and in the dynamics of a radiating gas [2]. The problem of supersonic two- 
phase flow near a wedge was studied on the basis of the linear theory in [3] and by numerical 
methods in [4]. The solution of the problem of the motion of a particle behind an oblique 
shock [5] and of a reflected particle [6] are known. The exact solution of the problem of 
the motion of a cloud of particles behind an oblique shock was found in [7]. 
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